Layer library with forward propagation
This commit is contained in:
parent
283fa5890b
commit
b04b7df465
48
layer.h
Normal file
48
layer.h
Normal file
@ -0,0 +1,48 @@
|
||||
#include "matrices.h"
|
||||
#include <cassert>
|
||||
#include <math.h>
|
||||
|
||||
#define assertm(exp, msg) assert((void(msg), exp))
|
||||
|
||||
class Layer {
|
||||
private:
|
||||
Matrix input;
|
||||
Matrix weights;
|
||||
Matrix raw_output;
|
||||
Matrix activated_output;
|
||||
Matrix biases;
|
||||
|
||||
float learning_rate = 0.1;
|
||||
|
||||
static inline float Sigmoid(float);
|
||||
static inline float SigmoidPrime(float);
|
||||
|
||||
public:
|
||||
inline Layer(int); // Number of neurons
|
||||
|
||||
inline void Forward(); // Forward Pass with sigmoid
|
||||
inline void Forward(float (*activation)(float)); // Forward Pass with custom activation function
|
||||
};
|
||||
|
||||
float Layer::Sigmoid(float x){
|
||||
return 1 / (1 + exp(-x));
|
||||
}
|
||||
|
||||
float Layer::SigmoidPrime(float x){
|
||||
float buffer = Layer::Sigmoid(x);
|
||||
return buffer * (1 - buffer);
|
||||
}
|
||||
|
||||
void Layer::Forward(float (*activation)(float)){
|
||||
// Multiply inputs by weights
|
||||
// W x I + B = Z
|
||||
this->raw_output = this->input.Multiply(&this->weights).Add(&this->biases);
|
||||
|
||||
// Now through activation function
|
||||
// A = F(Z)
|
||||
this->activated_output = this->raw_output.Function(activation);
|
||||
}
|
||||
|
||||
void Layer::Forward(){
|
||||
this->Forward(&Layer::Sigmoid);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user