Layer library with forward propagation

This commit is contained in:
LeLeLeLeto 2024-12-31 01:12:47 +01:00
parent 283fa5890b
commit b04b7df465

48
layer.h Normal file
View File

@ -0,0 +1,48 @@
#include "matrices.h"
#include <cassert>
#include <math.h>
#define assertm(exp, msg) assert((void(msg), exp))
class Layer {
private:
Matrix input;
Matrix weights;
Matrix raw_output;
Matrix activated_output;
Matrix biases;
float learning_rate = 0.1;
static inline float Sigmoid(float);
static inline float SigmoidPrime(float);
public:
inline Layer(int); // Number of neurons
inline void Forward(); // Forward Pass with sigmoid
inline void Forward(float (*activation)(float)); // Forward Pass with custom activation function
};
float Layer::Sigmoid(float x){
return 1 / (1 + exp(-x));
}
float Layer::SigmoidPrime(float x){
float buffer = Layer::Sigmoid(x);
return buffer * (1 - buffer);
}
void Layer::Forward(float (*activation)(float)){
// Multiply inputs by weights
// W x I + B = Z
this->raw_output = this->input.Multiply(&this->weights).Add(&this->biases);
// Now through activation function
// A = F(Z)
this->activated_output = this->raw_output.Function(activation);
}
void Layer::Forward(){
this->Forward(&Layer::Sigmoid);
}