LeNN/layer.h
2024-12-31 17:21:57 +01:00

111 lines
3.0 KiB
C++

#ifndef LAYER_H_
#define LAYER_H_
#include "matrices.h"
#include <cassert>
#include <math.h>
#define assertm(exp, msg) assert((void(msg), exp))
class Layer {
public:
Matrix input;
Matrix weights;
Matrix raw_output;
Matrix activated_output;
Matrix biases;
// Planning for back propagation
// Each layer needs the derivative of Z with respect to W, derivative of A with respect to Z and derivative of loss with respect to A
// Let's call them dzw, daz and dca
Matrix daz;
static inline float Sigmoid(float);
static inline float SigmoidPrime(float);
inline void Forward(); // Forward Pass with sigmoid
inline void Forward(float (*activation)(float)); // Forward Pass with custom activation function
inline void BackPropagate(Matrix);
inline void BackPropagate(Matrix, Matrix, float (*activation)(float)); // To backpropagate, we need the derivative of loss with respect to A and the derivative of used activation function
inline void Feed(Matrix);
// Constructors
// Input size, Size
Layer(int, int);
Layer();
};
void Layer::BackPropagate(Matrix dzw, Matrix dca, float (*derivative)(float)){
// Calculate daz ; derivative of activation function
this->daz = this->activated_output.Function(derivative);
// this->daz.Print("daz");
// We need to transpose dzw and extend down
// dzw.Print("dzw");
dzw = dzw.Transpose().ExtendDown(dca.values.size());
// dzw.Print("dzw extended transposed");
Matrix dcw = this->daz.Hadamard(&dca).ExtendRight(this->input.values.size());
// dcw.Print("daz . dca");
dcw = dcw.Hadamard(&dzw);
// dcw.Print("daz . dca . dzw : DCW");
// this->weights.Print("weights");
// Apply dcw to weights
float learning_rate = 0.1F;
Matrix reduced_dcw = dcw.Multiply(learning_rate);
// We SUBSTRACT the derivative of loss with respect to the weights.
this->weights = this->weights.Substract(&reduced_dcw);
// this->weights.Print("New weights");
}
Layer::Layer(){
}
Layer::Layer(int input_size, int size){
this->input = Matrix(input_size, 1);
// Every neuron has a weight for every input
this->weights = Matrix(size, input_size);
this->weights.Randomize(-1.0F, 1.0F);
this->raw_output = Matrix(size, 1);
this->activated_output = this->raw_output;
// One bias per neuron
this->biases = Matrix(size, 1);
this->biases.Randomize(-1.0F, 1.0F);
}
void Layer::Feed(Matrix a){
this->input = a;
}
float Layer::Sigmoid(float x){
return 1 / (1 + exp(-x));
}
float Layer::SigmoidPrime(float x){
float buffer = Layer::Sigmoid(x);
return buffer * (1 - buffer);
}
void Layer::Forward(float (*activation)(float)){
// Multiply weight matrix by input matrix
// W x I + B = Z
this->raw_output = this->weights.Multiply(&this->input).Add(&this->biases);
// Now through activation function
// A = F(Z)
this->activated_output = this->raw_output.Function(activation);
}
void Layer::Forward(){
this->Forward(&Layer::Sigmoid);
}
#endif