LeNN/network.h

69 lines
2.2 KiB
C++

#include "layer.h"
#include "matrices.h"
#include <vector>
class Network {
public:
Matrix input;
float (*activation)(float) = Layer::Sigmoid; // Activation function is sigmoid by default
std::vector<Layer> hidden_layers;
Layer output_layer;
inline void Feed(Matrix);
inline Matrix GetOutput();
inline void Forward();
inline void BackPropagate(Matrix);
// Constructors
// Input size, Array of hidden sizes, Output size
Network(int, std::vector<int>, int);
};
void Network::BackPropagate(Matrix target){
// Calculate derivative of loss in respect to A (dca) for output layer
// loss = (A - Y)^2
// derivative = 2(A - Y)
Matrix loss = this->output_layer.activated_output.Substract(&target);
loss = loss.Hadamard(&loss);
// loss.Print("Loss");
Matrix dca = this->output_layer.activated_output.Substract(&target);
dca = dca.Multiply(2.0F);
// dca.Print("DCA");
this->output_layer.BackPropagate(this->hidden_layers[this->hidden_layers.size() - 1].activated_output, dca, &Layer::SigmoidPrime);
}
Network::Network(int input_size, std::vector<int> hidden_sizes, int output_size){
this->input = Matrix(input_size, 1);
this->hidden_layers.push_back(Layer(input_size, hidden_sizes[0]));
for(int i = 1; i < hidden_sizes.size(); i++){
// For every hidden layer, create a layer of specified size
this->hidden_layers.push_back(Layer(hidden_sizes[i-1], hidden_sizes[i]));
}
this->output_layer = Layer(hidden_sizes[hidden_sizes.size() - 1], output_size);
}
Matrix Network::GetOutput(){
return this->output_layer.activated_output;
}
void Network::Feed(Matrix a){
this->input = a;
}
void Network::Forward(){
// Feeding first layer
this->hidden_layers[0].Feed(this->input);
this->hidden_layers[0].Forward();
for(int i = 1; i < this->hidden_layers.size(); i++){
// Feeding A(L-1) and forwarding
this->hidden_layers[i].Feed(this->hidden_layers[i - 1].activated_output);
this->hidden_layers[i].Forward();
}
this->output_layer.Feed(this->hidden_layers[this->hidden_layers.size() - 1].activated_output);
this->output_layer.Forward();
}