This commit is contained in:
vik 2024-11-28 18:23:31 -06:00
parent 7a5197285e
commit 95ad0ca8c4

54
snn.c
View File

@ -4,28 +4,7 @@
#include <assert.h> #include <assert.h>
#include <gsl/matrix> #include <gsl/matrix>
/* #define ALPHA 0.2
neural network
input layer -> hidden layer -> output layer
each neuron has weights, numweights = numneurons
neuron value * weight goes to another neuron, and that sum goes through activation fxn to determine that other neuron"'s output
5 input layers 3 hidden layers
each connection from a neuron carries a weight, 3 connections from a single neuron. new formula, num connections is equal to hidden num neurons * input neurons
each neuron only gets the weighted sum from that number. ie the first hidden neuron only gets the weighted sum from the input values * their respective first weights.
represent that as a matrix with # cols representing hidden neuron amount and # rows representing input neurons
[.1 .2 .3 .4 .5 w1s of each input neuron
.3 .5 .7 .9 1.1 w2s
.2 .4 .5 .8 1.2 ] w3s
just multiply input values by w1 row to get hidden neuron 1's value
repeat for hn2 and hn3
this works.
*/
typedef struct Layer { typedef struct Layer {
struct Layer* previous; struct Layer* previous;
@ -37,6 +16,15 @@ typedef struct Layer {
gsl_matrix* values; // the layer's values gsl_matrix* values; // the layer's values
} Layer; } Layer;
double uniformrandom(double low, double high) {
// [low, high)
return low + ((double)rand() / (RAND_MAX / (high - low)));
}
double relu(double input, double alpha) {
return (input >= 0) ? input : (alpha * input);
}
Layer* createlayer(Layer* lprev, Layer* lnext, int neurons, gsl_matrix* nvalues) { Layer* createlayer(Layer* lprev, Layer* lnext, int neurons, gsl_matrix* nvalues) {
Layer* self = (Layer*) calloc(1, sizeof(Layer)); Layer* self = (Layer*) calloc(1, sizeof(Layer));
if (self == NULL) return NULL; if (self == NULL) return NULL;
@ -45,13 +33,14 @@ Layer* createlayer(Layer* lprev, Layer* lnext, int neurons, gsl_matrix* nvalues)
// number of neurons MUST be more than zero sigma // number of neurons MUST be more than zero sigma
self->neurons = neurons; self->neurons = neurons;
assert((neurons == nvalues->size2) && (nvalues->size1 == lnext->neurons)); assert(neurons == nvalues->size1);
self->values = nvaules; self->values = nvaules;
// setup the weights matrix // setup the weights matrix
assert(lnext != NULL); assert(lnext != NULL);
self->weights = gsl_matrix_calloc(lnext->neurons, neurons); self->weights = gsl_matrix_calloc(lnext->neurons, neurons);
// make the matrix have uniform random values from -0.5 to 0.5
gsl_matrix_set_all(self->weights, uniformrandom(-0.5, 0,5));
return self; return self;
} }
@ -63,5 +52,22 @@ void freelayer(Layer* layer) {
} }
void forwardprop(Layer* layer) { void forwardprop(Layer* layer) {
assert(layer->next != NULL);
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, layer->weights, layer->values, 0, layer->next->values);
// layer->next->values will only ever have a single row
for(unsigned int i = 0; i < layer->next->values->size1; i++) {
double davalue = gsl_matrix_get(layer->next->values, i, 0);
gsl_matrix_set(layer->next->values, i, 0, relu(davalue, ALPHA));
}
}
void cost(Layer* layer, gsl_matrix* expected) {
// (for mnist at least) your expected will be a matrix of [10x1]
assert(layer->values->size1 == expected->size1);
}
void backprop(Layer* layer) {
assert(layer->previous != NULL);
} }