#include #include #include #include #include #include #include #define ALPHA 0.2 #define LEARNING_RATE 0.01 typedef struct Layer { struct Layer* previous; struct Layer* next; int neurons; // number of neurons gsl_matrix* weights; // make a matrix of size m x n, where m is the number of neurons in the // next layer while n is the number of neurons in the current layer // -> exploit BLAS to matmul and get the results of the next layer gsl_matrix* values; // the layer's values gsl_matrix* biases; // weights for the bias. bias will always be 1 } Layer; double uniformrandom(double low, double high) { // [low, high) return low + ((double)rand() / (RAND_MAX / (high - low))); } // activation function and it's derivative double relu(double input, double alpha) { return (input >= 0) ? input : (alpha * input); } double drelu(double input, double alpha) { return (input >= 0) ? 1 : alpha; } Layer* createlayer(Layer* lprev, Layer* lnext, int neurons, gsl_matrix* nvalues) { Layer* self = (Layer*) calloc(1, sizeof(Layer)); if (self == NULL) return NULL; self->previous = lprev; self->next = lnext; // number of neurons MUST be more than zero sigma self->neurons = neurons; assert(neurons == nvalues->size1); self->values = nvalues; // setup the weights matrix assert(lnext != NULL); self->weights = gsl_matrix_calloc(lnext->neurons, neurons); self->biases = gsl_matrix_calloc(lnext->neurons, 1); // make the matrix have uniform random values from -0.5 to 0.5 for (unsigned int i = 0; i < self->weights->size1; ++i) { for (unsigned int j = 0; j < self->weights->size2; ++j) { gsl_matrix_set(self->weights, i, j, uniformrandom(-0.5, 0.5)); } } return self; } void freelayer(Layer* layer) { assert(layer != NULL); if (layer->weights != NULL) gsl_matrix_free(layer->weights); if (layer->values != NULL) gsl_matrix_free(layer->values); if (layer->biases != NULL) gsl_matrix_free(layer->biases); free(layer); } void forwardprop(Layer* layer) { assert(layer->next != NULL); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, layer->weights, layer->values, 0, layer->next->values); gsl_matrix_add(layer->next->values, layer->biases); // layer->next->values will only ever have a single column for(unsigned int i = 0; i < layer->next->values->size1; i++) { double davalue = gsl_matrix_get(layer->next->values, i, 0); gsl_matrix_set(layer->next->values, i, 0, relu(davalue, ALPHA)); } } double matrixsum(gsl_matrix* matrix) { double result = 0.0; for (unsigned int i = 0; i < matrix->size1; i++) { for (unsigned int j = 0; j < matrix->size2; j++) { result += gsl_matrix_get(matrix, i, j); } } return result; } double msecost(Layer* layer, gsl_matrix* expected) { // mean squared error cost fxn // only on output layer assert(layer->values->size1 == expected->size1); gsl_matrix* result = gsl_matrix_alloc(expected->size1, 1); gsl_matrix_memcpy(result, layer->values); gsl_matrix_sub(result, expected); gsl_matrix_mul_elements(result, result); // squares matrix double matsum = matrixsum(result); gsl_matrix_free(result); return (((double)1 / layer->neurons) * matsum); // you dont need this for mean squared error. need this if you implement a diff cost function } void backprop(Layer* layer, gsl_matrix* expected) { // b/c you use mse, you can just do like ouput layer - expected output (matrix subtraction) assert(layer->previous != NULL); gsl_matrix* deltao = gsl_matrix_alloc(layer->neurons, 1); gsl_matrix_memcpy(deltao, layer->values); gsl_matrix_sub(deltao, expected); if (layer->next == NULL) { // signified this is the output layer gsl_matrix* prevlayertranposed = gsl_matrix_alloc(layer->previous->values->size2, layer->previous->values->size1); gsl_matrix_transpose_memcpy(prevlayertranposed, layer->previous->values); gsl_matrix* updatedweights = gsl_matrix_alloc(layer->neurons, layer->previous->neurons); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, deltao, prevlayertranposed, 0.0, updatedweights); gsl_matrix_scale(updatedweights, (double)(LEARNING_RATE * -1.00)); gsl_matrix_memcpy(layer->previous->weights, updatedweights); gsl_matrix* updatedbiases = gsl_matrix_alloc(layer->neurons, 1); gsl_matrix_memcpy(updatedbiases, deltao); gsl_matrix_scale(updatedbiases, (double)(LEARNING_RATE * -1.00)); gsl_matrix_memcpy(layer->previous->biases, updatedbiases); gsl_matrix_free(prevlayertranposed); gsl_matrix_free(updatedweights); gsl_matrix_free(updatedbiases); } else { // weights connecting the input layer to the hidden layer - cant do MSE trick gsl_matrix* deltah = gsl_matrix_alloc(layer->neurons, 1); for (unsigned int i = 0; i < layer->neurons; i++) { gsl_matrix_set(deltah, i, 0, drelu(gsl_matrix_get(layer->values, i, 0), ALPHA)); // derivative values are set in deltah } gsl_matrix* weightstransposed = gsl_matrix_alloc(layer->weights->size2, layer->weights->size1); gsl_matrix_transpose_memcpy(weightstransposed, layer->weights); gsl_matrix* transposedweightsmultipliedbydelta = gsl_matrix_alloc(weightstransposed->size1, 1); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, weightstransposed, deltao, 0.0, transposedweightsmultipliedbydelta); gsl_matrix_mul_elements(deltah, transposedweightsmultipliedbydelta); gsl_matrix* previnputtransposed = gsl_matrix_alloc(layer->previous->values->size2, layer->previous->values->size1); gsl_matrix_transpose_memcpy(previnputtransposed, layer->previous->values); gsl_matrix* updatedweights = gsl_matrix_alloc(layer->neurons, layer->previous->neurons); gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, deltah, previnputtransposed, 0.0, updatedweights); gsl_matrix_scale(updatedweights, (double)(LEARNING_RATE * -1.00)); gsl_matrix_memcpy(layer->previous->weights, updatedweights); gsl_matrix* updatedbiases = gsl_matrix_alloc(layer->neurons, 1); gsl_matrix_memcpy(updatedbiases, deltah); gsl_matrix_scale(updatedbiases, (double)(LEARNING_RATE * -1.00)); gsl_matrix_memcpy(layer->previous->biases, updatedbiases); gsl_matrix_free(deltah); gsl_matrix_free(weightstransposed); gsl_matrix_free(transposedweightsmultipliedbydelta); gsl_matrix_free(previnputtransposed); gsl_matrix_free(updatedweights); gsl_matrix_free(updatedbiases); } gsl_matrix_free(deltao); }