create layers functions
This commit is contained in:
		
							
								
								
									
										96
									
								
								cnn.h
									
									
									
									
									
								
							
							
						
						
									
										96
									
								
								cnn.h
									
									
									
									
									
								
							| @@ -1,7 +1,8 @@ | ||||
| // convolutional neural network c header library | ||||
| // inspired by euske's nn1 | ||||
| // meant to be synthesized into RTL through vitus HLS for an FPGA implementation | ||||
| // meant to be synthesized into RTL through Vitus HLS for an FPGA implementation | ||||
|  | ||||
| #include <cstdlib> | ||||
| #include <stdlib.h> | ||||
| #include <math.h> | ||||
|  | ||||
| @@ -18,7 +19,7 @@ typedef enum { | ||||
| 	fc_output, | ||||
| } fcpos; | ||||
|  | ||||
| typedef struct Layer { | ||||
| typedef struct { | ||||
| 	ltype type; | ||||
| 	// spatial extent of layer- l,w,depth (color space) | ||||
| 	int height; | ||||
| @@ -51,3 +52,94 @@ typedef struct Layer { | ||||
| 		} fc_params; | ||||
| 	} params; | ||||
| } Layer; | ||||
|  | ||||
| float random_uniform(float min, float max) { | ||||
| 	return min + (max - min) * ((float)rand() / RAND_MAX); | ||||
| } | ||||
|  | ||||
| float he_uniform(int fan_in) { | ||||
| 	float limit = sqrt(6.0f / fan_in); | ||||
| 	return random_uniform((limit * -1), limit); | ||||
| } | ||||
|  | ||||
| float glorot_uniform(int fan_in, int fan_out) { | ||||
| 	float limit = sqrt(6.0f / (fan_in + fan_out)); | ||||
|   return random_uniform((limit * -1), limit); | ||||
| } | ||||
|  | ||||
|  | ||||
| Layer* create_input(int height, int width, int channels) { | ||||
| 	Layer* layer = (Layer*)malloc(sizeof(Layer)); | ||||
| 	layer->type = input; | ||||
| 	layer->height = height; | ||||
| 	layer->width = width; | ||||
| 	layer->channels = channels; | ||||
| 	return layer; | ||||
| } | ||||
|  | ||||
| 	Layer* create_conv(int height, int width, int channels, int num_filters, int filter_width, int filter_height, int stride, int zero_padding) { | ||||
| 	Layer* layer = (Layer*)malloc(sizeof(Layer)); | ||||
| 	layer->type = conv; | ||||
| 	layer->height = height; | ||||
| 	layer->width = width; | ||||
| 	layer->channels = channels; | ||||
|  | ||||
| 	layer->params.conv_params.num_filters = num_filters; | ||||
| 	layer->params.conv_params.filter_height = filter_height; | ||||
| 	layer->params.conv_params.filter_width = filter_width; | ||||
| 	layer->params.conv_params.stride = stride; | ||||
| 	layer->params.conv_params.zero_padding = zero_padding; | ||||
|  | ||||
| 	// conv layer uses relu - use he init for weights | ||||
| 	layer->params.conv_params.filters = (float***)malloc(num_filters * sizeof(float**)); | ||||
| 	int fan_in = filter_height * filter_width * channels; | ||||
| 	for (int f = 0; f < num_filters; f++) { | ||||
| 		layer->params.conv_params.filters[f] = (float**)malloc(filter_height * sizeof(float*)); | ||||
| 		for (int h = 0; h < filter_height; h++) { | ||||
| 			layer->params.conv_params.filters[f][h] = (float*)malloc(filter_width * sizeof(float)); | ||||
| 			for (int w = 0; w < filter_width; w++) { | ||||
| 				layer->params.conv_params.filters[f][h][w] = he_uniform(fan_in); | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return layer; | ||||
| } | ||||
|  | ||||
| Layer* create_max_pool(int height, int width, int channels, int pool_height, int pool_width, int stride) { | ||||
| 	Layer* layer = (Layer*)malloc(sizeof(Layer)); | ||||
| 	layer->type = max_pool; | ||||
| 	layer->height = height; | ||||
| 	layer->width = width; | ||||
| 	layer->channels = channels; | ||||
|  | ||||
| 	layer->params.pool_params.pool_height = pool_height; | ||||
| 	layer->params.pool_params.pool_width = pool_width; | ||||
| 	layer->params.pool_params.stride = stride; | ||||
|  | ||||
| 	return layer; | ||||
| } | ||||
|  | ||||
| Layer* create_fc(int input_neurons, int output_neurons, fcpos position) { | ||||
| 	Layer* layer = (Layer*)malloc(sizeof(Layer)); | ||||
| 	layer->type = fully_connected; | ||||
| 	layer->height = 1; | ||||
| 	layer->width = output_neurons; | ||||
| 	layer->channels = 1; | ||||
|  | ||||
| 	layer->params.fc_params.input_neurons = input_neurons; | ||||
| 	layer->params.fc_params.output_neurons = output_neurons; | ||||
|   layer->params.fc_params.position = position; | ||||
|  | ||||
| 	// use xav/glorot init b/c of sigmoid | ||||
| 	layer->params.fc_params.weights = (float**)malloc(output_neurons * sizeof(float*)); | ||||
| 	for (int i = 0; i < output_neurons; i++) { | ||||
| 		layer->params.fc_params.weights[i] = (float*)malloc(input_neurons * sizeof(float)); | ||||
| 		for (int j = 0; j < input_neurons; j++) { | ||||
| 			layer->params.fc_params.weights[i][j] = glorot_uniform(input_neurons, output_neurons); | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return layer; | ||||
| } | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user