Compare commits

..

12 Commits

4 changed files with 189 additions and 16 deletions

5
.gitignore vendored
View File

@ -9,3 +9,8 @@
layer.exe
main.exe
network.exe
build/Debug/main.o
build/Debug/outDebug.exe
matrices.exe
tempCodeRunnerFile.cpp

77
layer.h
View File

@ -1,3 +1,6 @@
#ifndef LAYER_H_
#define LAYER_H_
#include "matrices.h"
#include <cassert>
#include <math.h>
@ -5,25 +8,83 @@
#define assertm(exp, msg) assert((void(msg), exp))
class Layer {
private:
public:
Matrix input;
Matrix weights;
Matrix raw_output;
Matrix activated_output;
Matrix biases;
float learning_rate = 0.1;
// Planning for back propagation
// Each layer needs the derivative of Z with respect to W, derivative of A with respect to Z and derivative of loss with respect to A
// Let's call them dzw, daz and dca
Matrix daz;
static inline float Sigmoid(float);
static inline float SigmoidPrime(float);
public:
inline Layer(int); // Number of neurons
inline void Forward(); // Forward Pass with sigmoid
inline void Forward(float (*activation)(float)); // Forward Pass with custom activation function
inline void BackPropagate(Matrix);
inline void BackPropagate(Matrix, Matrix, float (*activation)(float)); // To backpropagate, we need the derivative of loss with respect to A and the derivative of used activation function
inline void Feed(Matrix);
// Constructors
// Input size, Size
Layer(int, int);
Layer();
};
void Layer::BackPropagate(Matrix dzw, Matrix dca, float (*derivative)(float)){
// Calculate daz ; derivative of activation function
this->daz = this->activated_output.Function(derivative);
// this->daz.Print("daz");
// We need to transpose dzw and extend down
// dzw.Print("dzw");
dzw = dzw.Transpose().ExtendDown(dca.values.size());
// dzw.Print("dzw extended transposed");
Matrix dcw = this->daz.Hadamard(&dca).ExtendRight(this->input.values.size());
// dcw.Print("daz . dca");
dcw = dcw.Hadamard(&dzw);
// dcw.Print("daz . dca . dzw : DCW");
// this->weights.Print("weights");
// Apply dcw to weights
float learning_rate = 0.1F;
Matrix reduced_dcw = dcw.Multiply(learning_rate);
// We SUBSTRACT the derivative of loss with respect to the weights.
this->weights = this->weights.Substract(&reduced_dcw);
// this->weights.Print("New weights");
}
Layer::Layer(){
}
Layer::Layer(int input_size, int size){
this->input = Matrix(input_size, 1);
// Every neuron has a weight for every input
this->weights = Matrix(size, input_size);
this->weights.Randomize(-1.0F, 1.0F);
this->raw_output = Matrix(size, 1);
this->activated_output = this->raw_output;
// One bias per neuron
this->biases = Matrix(size, 1);
this->biases.Randomize(-1.0F, 1.0F);
}
void Layer::Feed(Matrix a){
this->input = a;
}
float Layer::Sigmoid(float x){
return 1 / (1 + exp(-x));
}
@ -34,9 +95,9 @@ float Layer::SigmoidPrime(float x){
}
void Layer::Forward(float (*activation)(float)){
// Multiply inputs by weights
// Multiply weight matrix by input matrix
// W x I + B = Z
this->raw_output = this->input.Multiply(&this->weights).Add(&this->biases);
this->raw_output = this->weights.Multiply(&this->input).Add(&this->biases);
// Now through activation function
// A = F(Z)
@ -46,3 +107,5 @@ void Layer::Forward(float (*activation)(float)){
void Layer::Forward(){
this->Forward(&Layer::Sigmoid);
}
#endif

View File

@ -1,3 +1,6 @@
#ifndef MATRICES_H_
#define MATRICES_H_
#include <string>
#include <vector>
#include <cassert>
@ -6,9 +9,8 @@
#define assertm(exp, msg) assert((void(msg), exp))
class Matrix{
private:
std::vector<std::vector<float>> values;
public:
std::vector<std::vector<float>> values;
inline void Randomize();
inline void Randomize(float, float);
@ -19,7 +21,7 @@ class Matrix{
inline Matrix Multiply(float);
inline Matrix Multiply(const Matrix*);
inline void Hadamard(const Matrix*);
inline Matrix Hadamard(const Matrix*);
inline Matrix Add(float);
inline Matrix Add(const Matrix*);
@ -29,11 +31,15 @@ class Matrix{
inline Matrix Function(float (*f)(float));
inline Matrix ExtendRight(int);
inline Matrix ExtendDown(int);
inline void Print(std::string_view);
inline Matrix Transpose();
// Operators
inline Matrix();
inline Matrix operator=(const Matrix*);
inline Matrix operator+(const Matrix*);
inline Matrix operator-(const Matrix*);
@ -48,6 +54,32 @@ class Matrix{
inline Matrix(const Matrix*);
};
Matrix::Matrix(){
}
Matrix Matrix::ExtendRight(int new_size){
// Extend the matrix to the right
Matrix result(this->values.size(), new_size);
for(int n = 0; n < result.values.size(); n++){
for(int m = 0; m < result.values[n].size(); m++){
result.values[n][m] = this->values[n][0];
}
}
return result;
}
Matrix Matrix::ExtendDown(int new_size){
// Extend the matrix down
Matrix result(new_size, this->values[0].size());
for(int n = 0; n < result.values.size(); n++){
for(int m = 0; m < result.values[n].size(); m++){
result.values[n][m] = this->values[0][m];
}
}
return result;
}
Matrix Matrix::operator=(const Matrix* other){
return this->Swap(other);
}
@ -107,16 +139,18 @@ Matrix Matrix::Swap(const Matrix* other){
return *this;
}
void Matrix::Hadamard(const Matrix* other){
Matrix Matrix::Hadamard(const Matrix* other){
// Matrices need to be the same size
assertm(this->values.size() == other->values.size() &&
this->values[0].size() == other->values[0].size(),
"Matrices need to be the same size");
for(int m = 0; m < this->values.size(); m++){
for(int n = 0; n < this->values[m].size(); n++){
this->values[m][n] *= other->values[m][n];
Matrix result = this;
for(int m = 0; m < result.values.size(); m++){
for(int n = 0; n < result.values[m].size(); n++){
result.values[m][n] = this->values[m][n] * other->values[m][n];
}
}
return result;
}
// Multiply 2 matrices (AxB = this x other)
@ -254,3 +288,5 @@ void Matrix::Randomize(float min, float max){
}
}
}
#endif

69
network.h Normal file
View File

@ -0,0 +1,69 @@
#include "layer.h"
#include "matrices.h"
#include <vector>
class Network {
public:
Matrix input;
float (*activation)(float) = Layer::Sigmoid; // Activation function is sigmoid by default
std::vector<Layer> hidden_layers;
Layer output_layer;
inline void Feed(Matrix);
inline Matrix GetOutput();
inline void Forward();
inline void BackPropagate(Matrix);
// Constructors
// Input size, Array of hidden sizes, Output size
Network(int, std::vector<int>, int);
};
void Network::BackPropagate(Matrix target){
// Calculate derivative of loss in respect to A (dca) for output layer
// loss = (A - Y)^2
// derivative = 2(A - Y)
Matrix loss = this->output_layer.activated_output.Substract(&target);
loss = loss.Hadamard(&loss);
// loss.Print("Loss");
Matrix dca = this->output_layer.activated_output.Substract(&target);
dca = dca.Multiply(2.0F);
// dca.Print("DCA");
this->output_layer.BackPropagate(this->hidden_layers[this->hidden_layers.size() - 1].activated_output, dca, &Layer::SigmoidPrime);
}
Network::Network(int input_size, std::vector<int> hidden_sizes, int output_size){
this->input = Matrix(input_size, 1);
this->hidden_layers.push_back(Layer(input_size, hidden_sizes[0]));
for(int i = 1; i < hidden_sizes.size(); i++){
// For every hidden layer, create a layer of specified size
this->hidden_layers.push_back(Layer(hidden_sizes[i-1], hidden_sizes[i]));
}
this->output_layer = Layer(hidden_sizes[hidden_sizes.size() - 1], output_size);
}
Matrix Network::GetOutput(){
return this->output_layer.activated_output;
}
void Network::Feed(Matrix a){
this->input = a;
}
void Network::Forward(){
// Feeding first layer
this->hidden_layers[0].Feed(this->input);
this->hidden_layers[0].Forward();
for(int i = 1; i < this->hidden_layers.size(); i++){
// Feeding A(L-1) and forwarding
this->hidden_layers[i].Feed(this->hidden_layers[i - 1].activated_output);
this->hidden_layers[i].Forward();
}
this->output_layer.Feed(this->hidden_layers[this->hidden_layers.size() - 1].activated_output);
this->output_layer.Forward();
}