Compare commits
12 Commits
f4c5a3a92b
...
main
Author | SHA1 | Date | |
---|---|---|---|
a78b3ef569 | |||
8969d5ba2e | |||
922321e9cb | |||
fb49c794b2 | |||
9a1810775b | |||
17259076a0 | |||
81515a50d2 | |||
db04387314 | |||
627679252f | |||
87d39a705d | |||
25fe960caf | |||
02f0c8eac7 |
5
.gitignore
vendored
5
.gitignore
vendored
@ -9,3 +9,8 @@
|
||||
|
||||
layer.exe
|
||||
main.exe
|
||||
network.exe
|
||||
build/Debug/main.o
|
||||
build/Debug/outDebug.exe
|
||||
matrices.exe
|
||||
tempCodeRunnerFile.cpp
|
||||
|
77
layer.h
77
layer.h
@ -1,3 +1,6 @@
|
||||
#ifndef LAYER_H_
|
||||
#define LAYER_H_
|
||||
|
||||
#include "matrices.h"
|
||||
#include <cassert>
|
||||
#include <math.h>
|
||||
@ -5,25 +8,83 @@
|
||||
#define assertm(exp, msg) assert((void(msg), exp))
|
||||
|
||||
class Layer {
|
||||
private:
|
||||
public:
|
||||
Matrix input;
|
||||
Matrix weights;
|
||||
Matrix raw_output;
|
||||
Matrix activated_output;
|
||||
Matrix biases;
|
||||
|
||||
float learning_rate = 0.1;
|
||||
// Planning for back propagation
|
||||
// Each layer needs the derivative of Z with respect to W, derivative of A with respect to Z and derivative of loss with respect to A
|
||||
// Let's call them dzw, daz and dca
|
||||
Matrix daz;
|
||||
|
||||
static inline float Sigmoid(float);
|
||||
static inline float SigmoidPrime(float);
|
||||
|
||||
public:
|
||||
inline Layer(int); // Number of neurons
|
||||
|
||||
inline void Forward(); // Forward Pass with sigmoid
|
||||
inline void Forward(float (*activation)(float)); // Forward Pass with custom activation function
|
||||
|
||||
inline void BackPropagate(Matrix);
|
||||
inline void BackPropagate(Matrix, Matrix, float (*activation)(float)); // To backpropagate, we need the derivative of loss with respect to A and the derivative of used activation function
|
||||
|
||||
inline void Feed(Matrix);
|
||||
|
||||
// Constructors
|
||||
// Input size, Size
|
||||
Layer(int, int);
|
||||
Layer();
|
||||
};
|
||||
|
||||
void Layer::BackPropagate(Matrix dzw, Matrix dca, float (*derivative)(float)){
|
||||
// Calculate daz ; derivative of activation function
|
||||
this->daz = this->activated_output.Function(derivative);
|
||||
// this->daz.Print("daz");
|
||||
|
||||
// We need to transpose dzw and extend down
|
||||
// dzw.Print("dzw");
|
||||
dzw = dzw.Transpose().ExtendDown(dca.values.size());
|
||||
// dzw.Print("dzw extended transposed");
|
||||
|
||||
Matrix dcw = this->daz.Hadamard(&dca).ExtendRight(this->input.values.size());
|
||||
// dcw.Print("daz . dca");
|
||||
dcw = dcw.Hadamard(&dzw);
|
||||
// dcw.Print("daz . dca . dzw : DCW");
|
||||
|
||||
// this->weights.Print("weights");
|
||||
|
||||
// Apply dcw to weights
|
||||
float learning_rate = 0.1F;
|
||||
Matrix reduced_dcw = dcw.Multiply(learning_rate);
|
||||
// We SUBSTRACT the derivative of loss with respect to the weights.
|
||||
this->weights = this->weights.Substract(&reduced_dcw);
|
||||
// this->weights.Print("New weights");
|
||||
}
|
||||
|
||||
Layer::Layer(){
|
||||
|
||||
}
|
||||
|
||||
Layer::Layer(int input_size, int size){
|
||||
this->input = Matrix(input_size, 1);
|
||||
|
||||
// Every neuron has a weight for every input
|
||||
this->weights = Matrix(size, input_size);
|
||||
this->weights.Randomize(-1.0F, 1.0F);
|
||||
|
||||
this->raw_output = Matrix(size, 1);
|
||||
this->activated_output = this->raw_output;
|
||||
|
||||
// One bias per neuron
|
||||
this->biases = Matrix(size, 1);
|
||||
this->biases.Randomize(-1.0F, 1.0F);
|
||||
}
|
||||
|
||||
void Layer::Feed(Matrix a){
|
||||
this->input = a;
|
||||
}
|
||||
|
||||
float Layer::Sigmoid(float x){
|
||||
return 1 / (1 + exp(-x));
|
||||
}
|
||||
@ -34,9 +95,9 @@ float Layer::SigmoidPrime(float x){
|
||||
}
|
||||
|
||||
void Layer::Forward(float (*activation)(float)){
|
||||
// Multiply inputs by weights
|
||||
// Multiply weight matrix by input matrix
|
||||
// W x I + B = Z
|
||||
this->raw_output = this->input.Multiply(&this->weights).Add(&this->biases);
|
||||
this->raw_output = this->weights.Multiply(&this->input).Add(&this->biases);
|
||||
|
||||
// Now through activation function
|
||||
// A = F(Z)
|
||||
@ -46,3 +107,5 @@ void Layer::Forward(float (*activation)(float)){
|
||||
void Layer::Forward(){
|
||||
this->Forward(&Layer::Sigmoid);
|
||||
}
|
||||
|
||||
#endif
|
50
matrices.h
50
matrices.h
@ -1,3 +1,6 @@
|
||||
#ifndef MATRICES_H_
|
||||
#define MATRICES_H_
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
@ -6,9 +9,8 @@
|
||||
#define assertm(exp, msg) assert((void(msg), exp))
|
||||
|
||||
class Matrix{
|
||||
private:
|
||||
std::vector<std::vector<float>> values;
|
||||
public:
|
||||
std::vector<std::vector<float>> values;
|
||||
inline void Randomize();
|
||||
inline void Randomize(float, float);
|
||||
|
||||
@ -19,7 +21,7 @@ class Matrix{
|
||||
inline Matrix Multiply(float);
|
||||
inline Matrix Multiply(const Matrix*);
|
||||
|
||||
inline void Hadamard(const Matrix*);
|
||||
inline Matrix Hadamard(const Matrix*);
|
||||
|
||||
inline Matrix Add(float);
|
||||
inline Matrix Add(const Matrix*);
|
||||
@ -29,11 +31,15 @@ class Matrix{
|
||||
|
||||
inline Matrix Function(float (*f)(float));
|
||||
|
||||
inline Matrix ExtendRight(int);
|
||||
inline Matrix ExtendDown(int);
|
||||
|
||||
inline void Print(std::string_view);
|
||||
|
||||
inline Matrix Transpose();
|
||||
|
||||
// Operators
|
||||
inline Matrix();
|
||||
inline Matrix operator=(const Matrix*);
|
||||
inline Matrix operator+(const Matrix*);
|
||||
inline Matrix operator-(const Matrix*);
|
||||
@ -48,6 +54,32 @@ class Matrix{
|
||||
inline Matrix(const Matrix*);
|
||||
};
|
||||
|
||||
Matrix::Matrix(){
|
||||
|
||||
}
|
||||
|
||||
Matrix Matrix::ExtendRight(int new_size){
|
||||
// Extend the matrix to the right
|
||||
Matrix result(this->values.size(), new_size);
|
||||
for(int n = 0; n < result.values.size(); n++){
|
||||
for(int m = 0; m < result.values[n].size(); m++){
|
||||
result.values[n][m] = this->values[n][0];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
Matrix Matrix::ExtendDown(int new_size){
|
||||
// Extend the matrix down
|
||||
Matrix result(new_size, this->values[0].size());
|
||||
for(int n = 0; n < result.values.size(); n++){
|
||||
for(int m = 0; m < result.values[n].size(); m++){
|
||||
result.values[n][m] = this->values[0][m];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
Matrix Matrix::operator=(const Matrix* other){
|
||||
return this->Swap(other);
|
||||
}
|
||||
@ -107,16 +139,18 @@ Matrix Matrix::Swap(const Matrix* other){
|
||||
return *this;
|
||||
}
|
||||
|
||||
void Matrix::Hadamard(const Matrix* other){
|
||||
Matrix Matrix::Hadamard(const Matrix* other){
|
||||
// Matrices need to be the same size
|
||||
assertm(this->values.size() == other->values.size() &&
|
||||
this->values[0].size() == other->values[0].size(),
|
||||
"Matrices need to be the same size");
|
||||
for(int m = 0; m < this->values.size(); m++){
|
||||
for(int n = 0; n < this->values[m].size(); n++){
|
||||
this->values[m][n] *= other->values[m][n];
|
||||
Matrix result = this;
|
||||
for(int m = 0; m < result.values.size(); m++){
|
||||
for(int n = 0; n < result.values[m].size(); n++){
|
||||
result.values[m][n] = this->values[m][n] * other->values[m][n];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// Multiply 2 matrices (AxB = this x other)
|
||||
@ -254,3 +288,5 @@ void Matrix::Randomize(float min, float max){
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
69
network.h
Normal file
69
network.h
Normal file
@ -0,0 +1,69 @@
|
||||
#include "layer.h"
|
||||
#include "matrices.h"
|
||||
#include <vector>
|
||||
|
||||
class Network {
|
||||
public:
|
||||
Matrix input;
|
||||
float (*activation)(float) = Layer::Sigmoid; // Activation function is sigmoid by default
|
||||
|
||||
std::vector<Layer> hidden_layers;
|
||||
Layer output_layer;
|
||||
|
||||
inline void Feed(Matrix);
|
||||
inline Matrix GetOutput();
|
||||
|
||||
inline void Forward();
|
||||
|
||||
inline void BackPropagate(Matrix);
|
||||
|
||||
// Constructors
|
||||
// Input size, Array of hidden sizes, Output size
|
||||
Network(int, std::vector<int>, int);
|
||||
};
|
||||
|
||||
void Network::BackPropagate(Matrix target){
|
||||
// Calculate derivative of loss in respect to A (dca) for output layer
|
||||
// loss = (A - Y)^2
|
||||
// derivative = 2(A - Y)
|
||||
Matrix loss = this->output_layer.activated_output.Substract(&target);
|
||||
loss = loss.Hadamard(&loss);
|
||||
// loss.Print("Loss");
|
||||
Matrix dca = this->output_layer.activated_output.Substract(&target);
|
||||
dca = dca.Multiply(2.0F);
|
||||
// dca.Print("DCA");
|
||||
|
||||
this->output_layer.BackPropagate(this->hidden_layers[this->hidden_layers.size() - 1].activated_output, dca, &Layer::SigmoidPrime);
|
||||
}
|
||||
|
||||
Network::Network(int input_size, std::vector<int> hidden_sizes, int output_size){
|
||||
this->input = Matrix(input_size, 1);
|
||||
|
||||
this->hidden_layers.push_back(Layer(input_size, hidden_sizes[0]));
|
||||
for(int i = 1; i < hidden_sizes.size(); i++){
|
||||
// For every hidden layer, create a layer of specified size
|
||||
this->hidden_layers.push_back(Layer(hidden_sizes[i-1], hidden_sizes[i]));
|
||||
}
|
||||
this->output_layer = Layer(hidden_sizes[hidden_sizes.size() - 1], output_size);
|
||||
}
|
||||
|
||||
Matrix Network::GetOutput(){
|
||||
return this->output_layer.activated_output;
|
||||
}
|
||||
|
||||
void Network::Feed(Matrix a){
|
||||
this->input = a;
|
||||
}
|
||||
|
||||
void Network::Forward(){
|
||||
// Feeding first layer
|
||||
this->hidden_layers[0].Feed(this->input);
|
||||
this->hidden_layers[0].Forward();
|
||||
for(int i = 1; i < this->hidden_layers.size(); i++){
|
||||
// Feeding A(L-1) and forwarding
|
||||
this->hidden_layers[i].Feed(this->hidden_layers[i - 1].activated_output);
|
||||
this->hidden_layers[i].Forward();
|
||||
}
|
||||
this->output_layer.Feed(this->hidden_layers[this->hidden_layers.size() - 1].activated_output);
|
||||
this->output_layer.Forward();
|
||||
}
|
Reference in New Issue
Block a user